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Abstract Tignt synchronization in parallel programs executed on multiprogrammed multiproces-
sors may result in catasurophic performance losses as a result of the absence of swapped out
processes. Our work introduces a programming methodology that utilizes computational syn-
chronization and avoids tight control flow synchronization in parallel programs. In this methodol-
. ogy, each phase of the computation is assigned a status that can be ready, blocked or completed,
and tasks in each computational phase are selfschcduled to ensure computational progress by the
available executing processes. Results obtained indicate that this methodology avoids the catas-
trophic performance losses resulting from the swapping of processes in multiprogrammed mul-
. tiprocessors.

1. Introduction Recent advances in hardware technologies and the advances in parallel
languages and algorithms arc promising to make shared memory multiprocessors the future com-
;f:::tion machines. Currently, there are many shared memory multiprocessors available, ranging

supercomputers to the minisuper and superminicomputers, and all have proven to be able to
deliver very high throughputs that satisfy time sharing and batch prograns needs. It has also been
seen that these machines are capable of supplying speedup of single parallel programs when their
execution is implemented by a set of cooperatit ¢ processes. However, most of these machines
run multiprogrammed operating systems and tt us there is no certainty that processes of a parallcl
program will be executed concurrently on more than one hardware processor. I many instances,
muliiprogramming, which is a property of the operating system aimed towards the improvement
of the overall systcm efficiency and througaput, interferes with parallel programs, and slowdowns
in the execution time of these programs occur.

In this paper we will be discussing the effects of multiprogramming on the performance of
parallcl programs, where the performance of a parallel program is determined in terms of the wall
clock time speed up of cxccuting the paralicl program over the sequential version. We will show
this effect by presenting the results of exccuting an example parallel program on three multipro-
cessors; an Alliant FX/8, a 20 processor Encorc Multimax and an 8 processor Scquent Balance
21000. These results will be given for situations where the parallcl program processcs were cxc-
cuted concurrently on scparate processors and for situauons where they were multiprogrammed
on a smaller sct of CPU's. In a latcr scction, we will also present a new programming

This work was supporied in pan by NASA Langlcy Rescarch Center under NAG-1-640, and by the Office of Naval Rescarch
under N0OO1 4-86-K-0204.
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methodoiogy that wili improve the pertormance of parallel programs and is suitable for multiprn-
grammed environments.

Throughout this paper we will assume the use of a ; rallcl language, where parallelism is at
the top of the program hierarchy, in particular we will be using the Force[1). The Force is a paral-
lel language that is currently being developed at the University of Colorado, Boulder, and is
currenuy implemented on several machines. Among these are Flex's, Cray’s, Alliant’s, Sequent’s
and Encore’s machines. In the Force and similar parallel programming paradigms, such as IBM
EPEX Forran(2], and Butterfly Uniform System library(3), the user writes a single program that
is to be executed by an arbitrary number of processes, where the number is not specified until run
time and stays fixed throughout the execution period. These processes are the parallel instruction
streams that will participate in the execution of the parallel program. In the parallel programmer's
view, these streams are supposed to be executed concurrently on separate CPU's during the >xe-
Cution of his paralle! program. However, as a result of multiprogrammir.z, coscheduling of thesc

processes may not be possible and the performance of parallel programs may be severely
affected.

2. Example Parallel Program Consider the LU factorization of a matrix with partial pivoting as
implemented in the Linpack SGEFA subroutine{4). The algorithm is composed of three phases
that are repeated for all rows of the matrix to be factored. These phases must be completed in
order for each row, before they can start for the next one. The search for the pivot row is done in
the first phase and the swapping of the pivot row and the current row is done in the second phase.
In the third phase, the actual Gaussian elimination compuiations are performed. Although, there
are other papers that consider the possibility of overlapping computational phases[5], our aim in

this paper is to show the effects of multiprogramming on tightly synchronized and strictly
ordered phases.

Using the Force, this algorithm was written by Jordan([6), as a Force subroutine. This Force
subroutine starts with a barrier{8), which is a Force construct that is used to synchronize the
instruction streams. The bamier will lct the force of processes executing a Force program wait
until they all execute the barrier statement. One process of the Force can then execute a sequen-
tial code section, if any, and the Force is released again. The barrier provides a very clear and
simple way to mark the completion of a computational phase and the availability of all the
processes to start the next phase of the computation. The barrier in this algorithm initializes
shared variables before the factorization process starts. The barrier is followed by the main loop
over the rows of the matrix. In this loop the first phase is done using a prescheduled Do loop(9],
followed by a crivical section. The second phase consists of swapping the pivot row and the
current row if swapping is necessary. Obviously, this can not be started before the pivot row is
located, hence, a Force barrier is used to detect the compietion of the first phase by detecting the
arrival of all the processes that participated in finding the pivot. The third phase is that of per-
forming the actual row reductions. Again the third phase is separatcd from the second phase by a
barrier which will also :alculate the pivot clement required for the climination. The Force subrou-
tine which implements the SGEFA algorithm is shown in Table-I.

2.1 Performance of the LU example The results of cxccuting the LU factorization algorithm on
an Encore's Multimax, Alliant's FX/8 and Scquent's Balance 21000 is shown in Figures (1,2.3),
respcctively. In these figures, the light bars show the results for the case where coscheduling of
processes on separatc CPU’s is guaran'red and multiprogramming is avoided by making surc that
no other jobs are running on the machinc when this program is run, Clcarly, these results arc
excellent, and almost lincar speedups are obuaired, up 10 the number of proccssors in these
machines. This algorithm, which performs and speeds up very well, is cxccuted by all the
processes in a lock step fashion, and the coscheduling of processes involved in the compulaton
On scparate processors is requircd to obtain this performance. When there are fower processors
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availabie than processes, tese processes will be muitiprogrammed on the availabie processors.
The performance degradation due to multiprogramming can be seen from the previous figures
when the number of processes exceeded the number of CPU’s. Although, the uscr usually res-

¢ tricts the number of processes he uses to be less or equal to the number of hardare processors
available, in an environment like Unix, he can't p:event other users or svsicm processes from run-
ning on the machine, and thus, these processes wili be multiprogiammed with the processes of his
paralle] program.

Due to multiprogramming, whizh is the scheduling =f a set of processes on a smalier set of
processors, some of the processzs will be suspended in the middle of their execution. In this
environment, the performance of ine LU algorithia is shown by the dark bars in Figures(1,2,3).
In these figures, multiprogiamming is manifested by the deterioration in the performance of the
paralle! algorithin and the considerable slow down that has been incurred. Although this effcct
varies for the machines that have been used, these variations are related to memory and cacheing
strategies as well as to operating systera’s iuning parameters such as the length of the time quarn-
tum and context switching overhead on each machine. The locking mechanism also plays a very
important role and since it is based on spin locks on thcse machines, processes waiting for locks
will be consuming their time slices which results in a lot of wasted CPU cycles. Thus, in tightly
synchronized parallel programs, suspended process may preciude the advancement of other exe-
cuting processes and limit progress in the overall program.

The light bars in figures (1,2,3), represent the execution time when the machines were not
loaded, and improvement in the performance is obtained up to the number of physical processors
on these machines. When running with more than 8 processes on Alliant's and Sequen:'s
machines, the performance started to deteriorate and by 9 pmcesses the performance is slower
than running with one process. On the Encore, running with 24 processes is as sicw as running
with one process. The dark bars, show the performance of Jordan’s L.U Factorization algeritihm
on a loaded machine. In this case, the algorithm shows imprevements up to 5 processes on the
Multimax and up to 3 processes on the Sequent and and the Alliant, above these numbers the per-
formance is deteriorating. Evidently, a main cause of this degradation is synchronization. Critical
’ sections are one of the causes since a suspended process that has a lock will block others waiting

for that lock. However, barriers are the major cause as the barrier would force the execuling
processes to wait for each other. In fact, the execution time of a parallel code section that i
enciased between two barriers. or equivalent stream synchronizing consiructs in a parallel pro-
gram, is limited by the time required for the slowest process to enter the first ba.ricr, execute
through the code section and exit the second barrier. The barrier construct is a source of degrada-
tion not only due to the time spent waiting for suspended processes, but also due to the c:itic 1l
sections that are used in its implementation and invoive all processes(8).

;
!
%
.g

3. A New Paralle! Programming Methodology In this section, we are going (6 present a new
programming methodology thai can be used to design and implement parallc] algcriiuns on
shared memory multiprocessors. Algorithms which are to be implemented using this methodol-
ogy are assumed (o be decomposable into phascs that have io be cGinpleted in order. This metho-
dology will make no assumption avbout the number or iic speed of processes that will participate
in the complction of a computation. The cumpletion of computations and progress raade in them
will be decided primarily by tic status of the computation and will be less dependent on the
number of executing processes. The key issuc in this mcthodology is the use of work barricrs to
detect the completion of previous phases rather than the use of th~ tradiLonal stream barriers.
The avoidance of strcam barriers will also limit synchronization to the access of shared data. and
will lct the available processes proceed as long as they are not blocked by locks acquired by
suspended processcs.
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Given a computation that consists of a number of subcomputations that have to be com-
pleted in order, each subcomputation will referred in 25 a computational phase. In general, a com-
putational phase represents a computation and a synchronization structurc that surtounds ihe
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vomputation to insure its scheduling and completion regardless of the number of processes in a
parallel program that will execute or pass over it. Currently, computations which can be handled
by this construct are assumed to consist of a group of parallel tasks which are represented by
indices that cover a range of integers, similar to those problems that can be implemented using
DOALL loops[9]. An optional critical code section can also be placed following the computation
and will be executed by every process that entered the computational phase and executed the
DOALL loop. The last section of a computational phase is a strictly sequential section of code
that is referred to as the completion section of the computational phase. It is executed by one pro-
cess after the computation has been completed.

A computational phase has a status that can be blocked, ready, or completed. When the
status of 8 computational phase is found to be blocked (not ready), processes that try to execute
this computational phase will wait until the status is set to unblocked (ready) by some other pro-
cess. When it is unblocked (ready), the construct will insure that no process can proceed with the
parallel program section following the computational phase before all the tasks in this subcompu-
tation have been scheduled. Processes can enter a computational pha e if it is unblocked, and
will execute in it if its computation and its completion section have not been finished, otherwise,
the computational phase will automatically become passive as its status will be marked as com-
Pleted. Processes that encounter a computational phase that has been completed, will skip it and
continue with the statement or construct that follows the computational phase. The completion
section of the current phase and the status of the following phase togc.her comprise a work bar-
rier if the completion section of the current phase contains a statement that would mark the next
blocked phase as ready. This will insure the integrity of the computation without the need for
waiting for all processes at the end of each phase.

3.1 LU factorization and the New Methodology Utilizing the concept of a computational phase,
the LU factorization algorithm was rewritten as a subroutine in an extension version of the Force.
The algorithm starts by initializing shared memory using a structure referred to as the /nir con-
struct. This construct is characterizzd by blocking processes until the initialization body has been
exccuted by a single process which succeeded in obtaining a shared lock before any other process
could. Processcs arriving after the initialization code has been executed will skip the body of the

Init construct and proceed with the code following the /nir. The structure of this construct is as
follows:

Each process will:
Atomically do:
- check if init done,
if done then skip the next two steps.
- do initialization.
- mark init done.

The use of this construct in imtialization will allow the scction of code to be exccuted before any
process can proceied and will not wait for all the processces to arrive. This coustruct will be reini-
ualized in an /nit construct at the end of this subroutinc so that other calls to this subroutine wil]
exccute correctly. The /mu construct we are using for Gaussian climination will do the following
initializations:

(1) Initialize the shared row marker (pivot row) 1o 1, the tirst row.
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(2) Initialize the status of the pivot search computational phase to ready.

(3) Reinitialize the /nit construct at the end of this Force subroutine so that the first process to
. exit this subroutine will execute it.

(4) Finally, the process executing this construct will wait for the matrix to be factored 1o
become ready.

The /nit construct, in this algorithm, is followed ty an iterative loop which is to be executed in
parallel (n-1) times, where n is the number of rows in the matrix to be factored.

Processes arriving at the beginning of the main algorithm loop, after passing by the init c. a-
struct, can start the LU factorization process because the matrix has been set up, the working row
has been initialized, and no process will get into the previous /nit construct to change the initial-
ized shared information. The main body loop consists of three computational phases, the pivot
search phase, row swapping phase and the row reduction phase. This algorithm .. written such
that one phase will be rcady at a time while the other phases are blocked. Initially all phases arc
blocked except for the pivot search phase. A block of strictly sequential code terminating each
phase will block the current phase and mark the following one as ready. At first, processes can
only exccute the pivot search section which is described below.

Processes that succeed in gerting into the pivot search computational phase will be self
scheduled to search for the pivot element, each process will search for the row with the maximum
pivot element among the rows it is assigned. Processes will then execute the critical section that
follows the DOALL loop, so that the global maximum pivot row is identified, and will proceed to
the completion section of the phase. The body of this section is to be executed by the first pro-
cess that reaches it after the computation has been completed. Early as well as late arriving
processes will skip this section and proceed to the next phase. The body of this section consists
of blocking this phase (pivot search), setting up the next phase (row swapping), doing an:

’ required initializations and marking it as ready. When this is done, processes wziting for the row
swapping computational phase will be let go, and every other phase would have been biocked.

The row swapping phase is organized in a way similar to the pivot search phase. Its compu-
tational section consists of swapping elements of the pivot row if swapping is needed. Its com-
pletion section is again similar to the completion section of the pivot search phase and the only

difference is that the process which will execute it will sctup the row reduction phase and make it
the next ready phase.

The row reduction phase is organized similarly. Its computational section consists of
DCALL loop that will perform the reduction of rows. Again, the completion section preserves
the general structure seen in the previous two phases, with the exccption that the process which
exccutes this scction will check 1o see if the LU factorization has been completed. If it is, all
phases arc marked as completed a:d an cxit flag is set so that processes will exit the subroutine,
otherwisc, the row marker (pivot cour.icr) is incremented and the three phases arc repeated uriti
the LU factorization is complcie. The outline of this parallel algonithm is as shown in Table II.
The performance of the implemented LU factorization algorithm, on Encore's Multimax,
Alliant’s FX/8 and Sequent’s Balance 8000, is shown in Figures (4.5,6). respectively. In these
figurcs, the performance of the new algorithm is the same as Jordan's when multprogramming is
not an issue. When it is, however, its cffcct is apparent, but the performance of the algorithm is
far superior 10 the performance of Jordan's algorithm. The light bars show the execution time of
the new LU algorithm with no other program running cn the machine other than this job. In this
casc, on Alliant’s and Scquent's machines, running with up 1o 12 processcs is almost S0% slower
than running with the minimum cxccution time with § processes but is still less than 2/3 of the
single process time. Similarly, on a 20 processor Encore runming with 24 is less than 1/3 of the
single process time. Tte dark bars represent the exceution time in an artificially loaded environ-
ment. In this casc thc minimum time was oblained when running with 7 processes on the
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Muitimax and running with 3 processes on Alliant’s and Sequent’s machines. On all of these

machines the execution time is less sensitive to the numiber of piocesses exceeding ihe number of

available processors. Thus, there is a better balance between individual parallel program perfor-
mance and overall system utilization.

4. Conclusions In this paper we presented a new programming methodology that can reduce
inefficiencies that may result from running parallel programs on multiprogrammed shared
memory multiprocessors. On thes. machines, the performance of paralle! programs that are
tughty synchronized may be severely affected and running with more than cne process will result
in a real execution time that is slower than running with a single proc.ss. Our methodology
reduces this effect and depends on work completions as the basis for progress in parallel pro-
grams. This methodology will take into account the possibility of swapping processes by avoid-

ing pre-scheduling of computations and avoiding the use of barriers that tightly synchionize
instruction streams.
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TABLE-l1 Jordan' s LU Factorization Of a Marrix |

Barrier
Initialize;
End barrier;

forksl,....n-1do

DOALL i=k,....n-1
find | such thas ABS{ au) > ma.r(au )

Critical
If 1> ipvi(k) then
save lin ipvi(k);

Barrier
End barrier;

Ifl<>k
DOALL j=k,...n-1
interchange a,; and a, ;

Barrier
piv=-.10/ a,
End barrier;

DOALL i=k+1,....n
begin
m.=-a, * piv
Jor j=k+1,...ndo
a.=a._.+m%*a ;
i ij i [ %)

endi;

Barrier
Reinitialize;

End barrier;
end k.
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TABLE.1I The New LU Factorization OfaMatrix

Init- (if not done)
Initialize;

Ll: pl: Phase-1 (Ready , Blocked , Complcted)

DOALL i=k,....n-1
find | such that ABS( a,)>max( a,)

Critical
If1 > ipvi(k) then
save | in ipvi(k):

C I;aou: (if not done and work completed)
gin
Set Phase-1 blocked
Setup Phase-2 ond mark it re:

end;
End Phase-1
P2: Phase-2 (Ready , Blocked , C leted)
DOALL j 1 o

Jj=k,....n-
interchange a,; anda 7

Check-out (if not dona and work compleied)
beoi

gin
Set Phase-2 blocked
piv=-10/ a,,
Setup Phase-3 and mark i1 ready

end;
End Phase-2

p3: Phase-3  (Ready , Blocked , Cumpleted)
DOALL i=k,....n-|
m=-a, *piv
Jor j=k+1,...ndo
a.=a.+m*%*a ;
id i i kg i

Check-ous (if not done and work complete.l)
bevi

gin
Set Phase-3 blocked
if (Factorization Complete)
begin
Set Phase-1 completed
Set Phase-2 completed
f;l Phase-3 completed
e

else
Reinitialize
Setup Phase-1 and mark it ready
end;
End Phase-3

If ifactorization no: complere) goto L1
end .
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Figurc(2) LU-Factorization on Alliant’s FX/8 using Barmcrs
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LU-Factorization on Sequent Balance-2100C
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Figure(3) LU-Factorization on Sequent's Balance-21000 using Barriers

LU-Tactorizr:ion on Encore Muitimax
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Figurc(4) LU-Factorization un Encore’s Multimax using the new micthod
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LU-Factorization on Afllart's FX/8
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Figure(5) LU-Faciorization on Alliant’s FX/8 using the new method

LU-Factorization on Sequent Baiance-21000
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Figure(6) LU-Factorization on Sequent's Balance-21000 using the new method
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